-1-

Time Series Analysis in AFNII

Outline: 6+ Hours of Edification

- Philosophy (e.g., theory without equations)
- Sample FMRI data
- Theory underlying FMRI analyses: the HRF
- "Simple" or "Fixed Shape" regression analysis
 - ★ Theory and Hands-on examples
- "Deconvolution" or "Variable Shape" analysis
 - ★ Theory and Hands-on examples
- Advanced Topics (followed by brain meltdown)

Goals: Conceptual **Understanding + Prepare to Try It Yourself**

-2-

Data Analysis Philosophy

- <u>Signal</u> = Measurable response to stimulus
- Noise = Components of measurement that interfere with detection of signal
- Statistical detection theory:
 - ★ <u>Understand</u> relationship between stimulus & signal
 - ★ Characterize noise statistically
 - ★ Can then devise methods to distinguish noise-only measurements from signal+noise measurements, and assess the methods' reliability
 - ★ Methods and usefulness depend strongly on the assumptions
 - Some methods are more "robust" against erroneous assumptions than others, but may be less sensitive

FMRI Philosopy: Signals and Noise

- FMRI <u>Stimulus→Signal</u> connection and <u>noise</u> <u>statistics</u> are both complex and poorly characterized
- Result: there is no "best" way to analyze FMRI time series data: there are only "reasonable" analysis methods
- To deal with data, must make some assumptions about the signal and noise
- Assumptions will be wrong, but must do something
- Different kinds of experiments require different kinds of analyses
 - ★ Since signal models and questions you ask about the signal will vary
 - ★ It is important to <u>understand</u> what is going on, so you can select and evaluate "reasonable" analyses

4

Meta-method for creating analysis methods

- Write down a mathematical model connecting stimulus (or "activation") to signal
- Write down a statistical model for the noise
- Combine them to produce an equation for measurements given signal+noise
 - ★ Equation will have unknown parameters, which are to be estimated from the data
 - ★ N.B.: signal may have zero strength (no "activation")
- Use statistical detection theory to produce an algorithm for processing the measurements to assess signal presence and characteristics
 - ⋆ e.g., least squares fit of model parameters to data

Time Series Analysis on Voxel Data

- Most common forms of FMRI analysis involve fitting an activation+BOLD model to each voxel's time series separately (AKA "univariate" analysis)
 - ★ Some pre-processing steps do include intervoxel computations; e.g.,
 - o spatial smoothing to reduce noise
 - o spatial registration to correct for subject motion
- Result of model fits is a set of parameters at each voxel, estimated from that voxel's data
 - \star e.g., activation amplitude (β), delay, shape
 - ★ "SPM" = statistical parametric map; e.g., t or F
- Further analysis steps operate on individual SPMs
 - ★ e.g., combining/contrasting data among subjects

-6-

Some Features of FMRI Voxel Time Series

- FMRI only measures <u>changes</u> due to neural "activity"
 - ★ Baseline level of signal in a voxel means little or nothing about neural activity
 - ★ Also, baseline level tends to drift around slowly (100 s time scale or so; mostly from small subject motions)
- Therefore, an FMRI experiment must have at least 2 different neural conditions ("tasks" and/or "stimuli")
 - ★ Then statistically test for differences in the MRI signal level between conditions
 - ★ Many experiments: one condition is "rest"
- Baseline is modeled separately from activation signals, and <u>baseline model includes "rest" periods</u>

-7-

Some Sample FMRI Data Time Series

- First: Block-trial FMRI data
 - ★ "Activation" occurs over a sustained period of time (say, 10 s or longer), usually from more than one stimulation event, in rapid succession
 - ★ BOLD (hemodynamic) response accumulates from multiple close activations and is large
 - ★ BOLD response is often visible in time series
 - ⋆ Noise magnitude about same as BOLD response
- Next 2 slides: same brain voxel in 3 (of 9) EPI runs
 - ★ black curve (noisy) = data
 - ★ red curve (above data) = ideal model response
 - ★ blue curve (within data) = model fitted to data
 - ★ somatosensory task (finger being rubbed)

Block-trials: 27 s "on" / 27 s "off"; TR=2.5 s; 130 time points/run

-10-

More Sample FMRI Data Time Series

- Second: Event-related FMRI
 - ★ "Activation" occurs in single relatively brief intervals
 - ★ "Events" can be randomly or regularly spaced in time
 - If events are randomly spaced in time, signal model itself <u>looks</u> noise-like (to the pitiful human eye)
 - ★ BOLD response to stimulus tends to be weaker, since fewer nearby-in-time "activations" have overlapping signal changes (hemodynamic responses)
- Next slide: Visual stimulation experiment

"Active" voxel shown in next slide

Hemodynamic Response Function (HRF)

 HRF is the idealization of measurable FMRI signal change responding to a single activation cycle (up and down) from a stimulus in a voxel

Response to brief activation (< 1 s):

- delay of 1-2 s
- rise time of 4-5 s
- fall time of 4-6 s
- model equation:

$$h(t) \propto t^b e^{-t/c}$$

h(t) is signal change t seconds
 after activation

1 Brief Activation (Event)

Linearity of HRF

 Multiple activation cycles in a voxel, closer in time than duration of HRF:

★ Assume that overlapping responses add

- Linearity is a pretty good assumption
- But not apparently perfect about
 90% correct
- Nevertheless, is widely taken to be true and is the basis for the "general linear model" (GLM) in FMRI analysis

3 Brief Activations

-14-

Linearity and Extended Activation

- Extended activation, as in a block-trial experiment:
 - ★ HRF accumulates over its duration (≈ 10 s)

- <u>Black</u> curve = response to a single brief stimulus
- Red curve = activation intervals
- <u>Green</u> curve = summed up HRFs from activations
- Block-trials have larger BOLD signal changes than eventrelated experiments

2 Long Activations (Blocks)

Convolution Signal Model

- FMRI signal we look for in each voxel is taken to be sum of the individual trial HRFs
 - ★ Stimulus timing is assumed known (or measured)
 - ★ Resulting time series (blue curves) are called the convolution of the HRF with the stimulus timing
- Must also allow for baseline and baseline drifting
 - ★ Convolution models only the FMRI signal changes

 Real data starts at and returns to a nonzero, slowly drifting baseline

-16-

Simple Regression Models

- Assume a fixed shape h(t) for the HRF
 - \star e.g., $h(t) = t^{8.6} \exp(-t/0.547)$ [MS Cohen, 1997]
 - ★ Convolved with stimulus timing (e.g., AFNI program waver), get ideal response function r(t)
- Assume a form for the baseline
 - \star e.g., $a + b \cdot t$ for a constant plus a linear trend
- In each voxel, fit data Z(t) to a curve of the form

$$Z(t) \approx a + b \cdot t + \beta \cdot r(t)$$
 The signal model!

- a, b, β are unknown parameters to be calculated in each voxel
- a,b are "nuisance" parameters
- β is amplitude of r(t) in data = "how much" BOLD

 Necessary baseline model complexity depends on duration of continuous imaging — e.g., 1 parameter per ~150 seconds

-18-

Duration of Stimuli - Important Caveats

- Slow baseline drift (time scale 100 s and longer) makes doing FMRI with <u>long duration</u> stimuli difficult
 - Learning experiment, where the task is done continuously for ~15 minutes and the subject is scanned to find parts of the brain that adapt during this time interval
 - Pharmaceutical challenge, where the subject is given some psychoactive drug whose action plays out over 10+ minutes (e.g., cocaine, ethanol)
- Multiple very <u>short duration</u> stimuli that are also very close in time to each other are very hard to tell apart, since their HRFs will have 90-95% overlap
 - Binocular rivalry, where percept switches ~ 0.5 s

Multiple Stimuli = Multiple Regressors

 Usually have more than one class of stimulus or activation in an experiment

-20-

- ★ e.g., want to see size of "face activation" vis-à-vis "house activation"; or, "what" vs. "where" activity
- Need to model each separate class of stimulus with a separate response function $r_1(t)$, $r_2(t)$, $r_3(t)$,
 - * Each $r_j(t)$ is based on the stimulus timing for activity in class number j
 - ★ Calculate a β_j amplitude = amount of $r_j(t)$ in voxel data time series Z(t)
 - \star Contrast β s to see which voxels have differential activation levels under different stimulus conditions
 - e.g., statistical test on the question $\beta_1 \beta_2 = 0$?

Multiple Stimuli - Important Caveat

- You do <u>not</u> model the baseline condition
 - e.g., "rest", visual fixation, high-low tone discrimination, or some other simple task
- FMRI can only measure <u>changes</u> in MR signal levels between tasks
 - So you need some simple-ish task to serve as a reference point
- The baseline model (e.g., a+b·t) takes care of the signal level to which the MR signal returns when the "active" tasks are turned off
 - Modeling the reference task explicitly would be redundant (or "collinear", to anticipate a forthcoming jargon word)

-22-

Multiple Stimuli - Experiment Design

- How many distinct stimuli do you need in each class? Our rough recommendations:
 - Short event-related designs: at least 25 events in each stimulus class (spread across multiple imaging runs) — and more is better
 - Block designs: at least 5 blocks in each stimulus class — 10 would be better
- While we're on the subject: How many subjects?
 - Several independent studies agree that 20-25 subjects in each category are needed for highly reliable results
 - This number is more than has usually been the custom in FMRI-based studies!

Multiple Regressors: Cartoon Animation

- Red curve = signal model for class #1
- <u>Green</u> curve = signal model for #2
- Blue curve = $\beta_1 \cdot #1 + \beta_2 \cdot #2$ where β_1 and β_2 vary from 0.1 to 1.7 in the animation
- Goal of regression is to find β_1 and β_2 that make the blue curve best fit the data time series
- Gray curve = 1.5·#1+0.6·#2+noise = simulated data

Determinant of matrix to invert would be zero

The Geometry of Collinearity - 2

• Trying to fit data with too many regressors (basis vectors) doesn't work: no unique solution

-28-

Equations: Notation

- Will generally follow notation of Doug Ward's manual for the AFNI program <u>3dDeconvolve</u>
- Time: continuous in reality, but in steps in the data
 - \star Functions of continuous time are written like f(t)
 - * Functions of discrete time expressed like $f(\underline{n} \cdot TR)$ where n=0,1,2,... and TR=time step
 - \star Usually use subscript notion f_n as shorthand
 - ★ Collection of numbers assembled in a column is a f_0 f_0 vector and is printed in boldface:

$$\begin{cases} \text{vector of} \\ \text{length } N \end{cases} = \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_{N-1} \end{bmatrix} = \mathbf{f} \begin{bmatrix} A_{00} & A_{01} & \cdots & A_{0,N-1} \\ A_{10} & A_{11} & \cdots & A_{1,N-1} \\ \vdots & \vdots & \ddots & \vdots \\ A_{M-1,0} & A_{M-1,1} & \cdots & A_{M-1,N-1} \end{bmatrix} = \mathbf{A} = \{M \times N \text{ matrix}\}$$

Equations: Single Response Function

- In each voxel, fit data Z_n to a curve of the form $Z_n \approx a + b \cdot t_n + \beta \cdot r_n$ for n=0,1,...,N-1 (N=# time pts)
 - a, b, β are unknown parameters to be calculated in each voxel
 - a,b are "nuisance" baseline parameters
 - β is amplitude of r(t) in data = "how much" BOLD
 - Baseline model might be more complicated for long
 (> 150 s) continuous imaging runs:
 - $150 < T < 300 \text{ s: } a+b\cdot t+c\cdot t^2$
 - Longer: $a+b\cdot t+c\cdot t^2+\lceil 7/150\rceil$ low frequency components
 - Usually, also include as extra baseline components the estimated subject head movement time series, in order to remove residual contamination from such artifacts (will see example of this later)

-30-

Equations: Multiple Response Functions

• In each voxel, fit data Z_n to a curve of the form $Z_n \approx [\text{baseline}]_n + \beta_1 \cdot r_n^{(1)} + \beta_2 \cdot r_n^{(2)} + \beta_3 \cdot r_n^{(3)} + \cdots$

- β_j is amplitude in data of $r_n^{(j)} = r_j(t_n)$; i.e., "how much" of j^{th} response function in the data time series
- In simple regression, each r_j(t) is derived directly from stimulus timing and user-chosen HRF model
 - In terms of stimulus times: $r_n^{(j)} = \sum_{k=1}^{K_j} h(t_n \tau_k^{(j)})$
- If stimulus occurs on the imaging TR time-grid, stimulus can be represented as a 0-1 time series: $\begin{bmatrix} s_0^{(j)} & s_1^{(j)} & s_2^{(j)} & s_3^{(j)} & \cdots \end{bmatrix} \text{ where } s_k^{(j)} = 1 \text{ if stimulus } \#j \text{ is on at time } t = k \cdot \text{TR, and } s_k^{(j)} = 0 \text{ if } \#j \text{ is off at that time:} \\ r_n^{(j)} = h_0 s_n^{(j)} + h_1 s_{n-1}^{(j)} + h_2 s_{n-2}^{(j)} + h_3 s_{n-3}^{(j)} + \cdots = \sum_{q=0}^p h_q s_{n-q}^{(j)}$

Equations: Matrix-Vector Form

Express *known* data vector as a sum of *known* columns with *unknown* coefficents:

z depends on the voxel; R doesn't

Solving $z \approx R\beta$ for β

- Number of equations = number of time points
 - ★ 100s per run, but perhaps 1000s per subject
- Number of unknowns usually in range 5–50
- Least squares solution: $\hat{\beta} = [\mathbf{R}^T \mathbf{R}]^{-1} \mathbf{R}^T \mathbf{z}$
 - \star $\hat{\beta}$ denotes an *estimate* of the true (unknown) β
 - \star From $\hat{\beta}$, calculate $\hat{z} = R\hat{\beta}$ as the *fitted model*

- o $\mathbf{Z} \hat{\mathbf{z}}$ is the **residual time series** = noise (we hope)
- Collinearity: when matrix R^TR can't be inverted
 - ★ Near collinearity: when inverse exists but is huge

-34-

Simple Regression: Recapitulation

- Choose HRF model *h(t)* [AKA *fixed-model regression*]
- Build model responses $r_n(t)$ to each stimulus class
 - \star Using h(t) and the stimulus timing
- Choose baseline model time series
 - ★ Constant + linear + quadratic + movement?
- Assemble model and baseline time series into the columns of the R matrix
- For each voxel time series \mathbf{z} , solve $\mathbf{z} \approx \mathbf{R} \boldsymbol{\beta}$ for $\hat{\boldsymbol{\beta}}$
- Individual subject maps: Test the coefficients in $\hat{\beta}$ that you care about for statistical significance
- **Group maps**: Transform the coefficients in $\hat{\beta}$ that you care about to Talairach space, and perform statistics on these $\hat{\beta}$ values

-35-

Sample Data Analysis: Simple Regression

- Enough theory (for now: more to come later!)
- To look at the data: type cd AFNI data1/afni; then afni
- Switch Underlay to dataset epi r1
 - ★ Then Sagittal Image and Graph
 - ★ FIM→Pick Ideal; then click afni/ideal r1.1D; then Set
 - * Right-click in image, Jump to (ijk), then 29 11 13, then Set

- Data clearly has activity in sync with reference
- Data also has a big spike, which is very annoying
 - Subject head movement!

-36-

Preparing Data for Analysis

- Six preparatory steps are common:
 - ★ Image registration (realignment): program <u>3dvolreg</u>
 - ★ Image smoothing: program <u>3dmerge</u>
 - ★ Image masking: program <u>3dClipLevel</u> or <u>3dAutomask</u>
 - ★ Conversion to percentile: programs <u>3dTstat</u> and <u>3dcalc</u>
 - ★ Censoring out time points that are bad: program 3dToutcount Or 3dTqual
 - ★ Catenating multiple imaging runs into 1 big dataset: program <u>3dTcat</u>
- Not all steps are necessary or desirable in any given case
- In this first example, will only do registration, since the data obviously needs this correction

Data Analysis Script

• In file epi r1 decon:

```
waver -GAM
      -input epi_r1_stim.1D
      -TR 2.5
      > epi r1 ideal.1D
3dvolreg -base 2
         -prefix epi r1 reg
         -1Dfile epi r1 mot.1D
         -verb
         epi r1+orig
3dDeconvolve
    -input epi_r1_reg+orig
    -nfirst
```

```
• waver creates model time series
from input stimulus timing in file
epi r1 stim.1D

    Plot a 1D file to screen with

   1dplot epi r1 ideal.1D
3dvolreg (3D image registration)
will be covered in a later presentation
```

```
-num stimts 1
-stim_file 1 epi_r1_ideal.1D \ ← Name of first input model time series file
-stim label 1 AllStim
-tout
-bucket epi r1 func
```

• <u>3dDeconvolve</u> = regression code

- \ ← Name of input dataset

- \ ← Name for results in AFNI menus
- \ \leftarrow Indicates to output *t*-statistic for β weights
- √ Mame of output "bucket" dataset (statistics)
 - Name of output model fit dataset

Contents of .1D files

-fitts epi_r1_fitts

epi_r1_stim.1D epi_r1_ideal.1D

To Run Script and View Results

- type source epi_r1_decon; then wait for programs to run
- type afni to view what we've got
 - ★ Switch Underlay to epi_r1_reg (output from 3dvolreg)
 - ★ Switch Overlay to epi_r1_func (output from 3dDeconvolve)
 - ★ Sagittal Image and Graph viewers
 - **★ FIM→Ignore→2** to have graph viewer not plot 1st 2 time pts
 - ★ FIM→Pick Ideal; pick epi_r1_ideal.1D (output from waver)
- Define Overlay to set up functional coloring
 - Olay \rightarrow Allstim[0] Coef (sets coloring to be from model fit β)
 - Thr→Allstim[0] t-s (sets threshold to be model fit t-statistic)
 - See Overlay (otherwise won't see the function!)
 - Play with threshold slider to get a meaningful activation map (e.g., t=4 is a decent threshold) — more on thresholds later

-40-

Textual Output of the epi r1 decon script

```
    3dvolreg output

++ Program 3dvolreg: AFNI version=AFNI_2005_12_30_0934 [32-bit]
++ Authored by: RW Cox
++ Reading input dataset ./epi r1+orig.BRIK
++ Edging: x=3 y=3 z=1
++ Initializing alignment base
++ Starting final pass on 110 sub-bricks: 0..1..2..3.. *** ..106..107..108..109..
++ CPU time for realignment=8.82 s [=0.0802 s/sub-brick]
++ Min : roll=-0.086 pitch=-0.995 yaw=-0.325 dS=-0.310 dL=-0.010 dP=-0.680
++ Mean: roll=-0.019 pitch=-0.020 yaw=-0.182 dS=+0.106 dL=+0.085 dP=-0.314
++ Max : roll=+0.107 pitch=+0.090 yaw=+0.000 dS=+0.172 dL=+0.204 dP=+0.079
++ Wrote dataset to disk in ./epi r1 reg+orig.BRIK

    3dDeconvolve output

++ Program 3dDeconvolve: AFNI version=AFNI_2005_12_30_0934 [32-bit]
++ Authored by: B. Douglas Ward, et al.
++ Matrix inverse average error = 1.3332e-14 Quality Control: Good values
++ Matrix setup time = 0.00 s
++ Calculations starting; elapsed time=0.502
++ voxel loop:0123456789.0123456789.0123456789.0123456789.0123456789.} Progress meter
++ Calculations finished; elapsed time=3.114
++ Wrote bucket dataset into ./epi_r1_func+orig.BRIK ++ Wrote 3D+time dataset into ./epi_r1_fitts+orig.BRIK Output indicators
++ #Flops=4.18043e+08 Average Dot Product=4.56798
```

• If a program crashes, we'll need to see this textual output (at least)!

More Viewing the Results

- Graph viewer: Opt→Tran 1D→Dataset #N to plot the model fit dataset output by 3dDeconvolve
 - Will open the control panel for the Dataset #N plugin
 - Click first Input on; then choose Dataset epi_r1_fitts+orig
 - Also choose Color dk-blue to get a pleasing plot
 - Then click on Set+Close (to close the plugin panel)
 - Should now see fitted time series in the graph viewer instead of data time series
 - Graph viewer: click Opt→Double Plot→Overlay on to make the fitted time series appear as an overlay curve
 - · This tool lets you visualize the quality of the data fit
- Can also now overlay function on MP-RAGE anatomical by using Switch Underlay to anat+orig dataset
 - Probably won't want to graph the anat+orig dataset!

-42-

Stimulus Correlated Movement?

- 3dvolreg saved the motion parameters estimates into file epi r1 mot.1D
- For fun: 1dplot epi_r1_mot.1D

- Extensive "activation" (i.e., correlation of data time series with model time series) along the top of the brain is an indicator of stimulus correlated motion artifact
- Can remain even after registration, due to errors in registration, magnetic field inhomogeneities, etc.
- Can be partially removed by using the estimated movement history (from 3dvolreg) as additional baseline model functions

Removing Residual Motion Artifacts

• Last part of script epi_r1_decon:

```
3dDeconvolve
    -input epi_r1_reg+orig
    -nfirst
    -num stimts 7
    -stim file 1 epi r1 ideal.1D
    -stim label 1 AllStim
    -stim file 2 epi r1 mot.1D'[0]'
    -stim base 2
    -stim_base 2
-stim_file 3 epi_r1_mot.1D'[1]'
-stim_base 3
-stim_file 4 epi_r1_mot.1D'[2]'
-stim_base 4
    -stim_file 5 epi_r1_mot.1D'[3]'
    -stim base 5
    -stim file 6 epi r1 mot.1D'[4]'
    -stim base 6
    -stim_file 7 epi_r1_mot.1D'[5]'
    -stim_base 7
    -tout
    -bucket epi r1 func mot
    -fitts epi r1 fitts mot
```

These new lines add 6 regressors to the model and assign them to the baseline (-stim_base option)

Output files: take a moment to look at results

-44-

Some Results: Before and After

Before: movement parameters are not in baseline model

After: movement parameters are in baseline model

t-statistic threshold set to (uncorrected) *p*-value of 10⁻⁴ in both images

Setting the Threshold: Principles

- Bad things:
 - False positives activations reported that aren't really there = Type I error
 - False negatives non-activations reported where there should be true activations found = Type II
 error
- Usual approach in statistical testing is to control the probability of a type I error
- In FMRI, we are making <u>many</u> statistical tests: one per voxel (≈20,000+) the result of which is an "activation map":
 - Voxels are colorized if they are survive the thresholding process

Important Aside

-46-

Setting the Threshold: Bonferroni

- If we set the threshold so there is a 1% chance that any given voxel is declared "active" even if its data is pure noise (FMRI jargon: "uncorrected" p-value is 0.01):
 - And assume each voxel's noise is independent of its neighbors (not really true)
 - With 30,000 voxels to threshold, would expect to get 300 false positives this may be as many as the true activations! Situation: **Not so good**.
- Bonferroni solution: set threshold (e.g., on *t*-statistic) so high that uncorrected p-value is 0.05/20000=2.5e-6
 - Then have only a 5% chance that even a single false positive voxel will be reported
 - Objection: will likely lose weak areas of activation

Important Aside

-47-

Setting the Threshold: Spatial Clustering

- Cluster-based detection lets us lower the statistical threshold and still control the false positive rate
- Two thresholds:
 - First: a per-voxel threshold that is somewhat low (so by itself leads to a lot of false positives, scattered around)
 - Second: form clusters of spatially contiguous (neighboring) voxels that survive the first threshold, and keep only those clusters above a volume threshold e.g., we don't keep isolated "active" voxels
- Usually: choose volume threshold, then calculate voxel-wise statistic threshold to get the overall "corrected" p-value you want (typically, corrected p=0.05)
 - No easy formulas for this, so must use simulation: AFNI program AlphaSim

Important Aside

-48-

AlphaSim: Clustering Thresholds

Simulated for brain mask of 18,465 voxels

• Look for smallest cluster with corrected p < 0.05

Uncorrected	Cluster Size	Cluster Size
p-value	/ Corrected p	/ Corrected p
(per voxel)	(uncorrelated)	(correlated 5 mm)
0.0002	2 / 0.001	3 / 0.004
0.0004	2 / 0.008	4 / 0.012
0.0007	2 / 0.026	3 / 0.031
0.0010	3 / 0.001	4 / 0.007
0.0020	3 / 0.003	4 / 0.032
0.0030	3 / 0.008	5 / 0.013
0.0040	3 / 0.018	5 / 0.029
0.0050	3 / 0.030	6 / 0.012
0.0060	4 / 0.003	6 / 0.023
0.0070	4 / 0.004	6 / 0.036
0.0080	4 / 0.006	7 / 0.016
0.0090	4 / 0.010	7 / 0.027
0.0100	4 / 0.015	7 / 0.042

Corresponds to sample data

Can make activation maps for display with cluster editing using 3dmerge program or in AFNI GUI (new: Sep 2006)

Important Aside

Multiple Stimulus Classes

- The experiment analyzed here in fact is more complicated
 - ★ There are 4 related visual stimulus types
 - ⋆ One goal is to find areas that are differentially activated between these different types of stimuli
 - ★ We have 4 imaging runs, 108 useful time points each (skipping first 2 in each run) that we will analyze together
 - Already registered and put together into dataset rall_vr+orig
 - ★ Stimulus timing files are in subdirectory stim_files/
 - ★ Script file waver_ht2 will create HRF models for regression:

```
cd stim_files
waver -dt 2.5 -GAM -input scan1to4a.1D > scan1to4a_hrf.1D
waver -dt 2.5 -GAM -input scan1to4t.1D > scan1to4t_hrf.1D
waver -dt 2.5 -GAM -input scan1to4h.1D > scan1to4h_hrf.1D
waver -dt 2.5 -GAM -input scan1to4l.1D > scan1to4l_hrf.1D
cd ..
```

- ★ Type source waver_ht2 to run this script
 - Might also use 1dplot to check if input .1D files are reasonable

-50-

Regression with Multiple Model Files

Script file decon_ht2 does the job:

```
3dDeconvolve -xout -input rall_vr+orig
-num_stimts 4
-stim_file 1 stim_files/scan1to4a_hrf.1D -stim_label 1 Actions
-stim_file 2 stim_files/scan1to4t_hrf.1D -stim_label 2 Tool
-stim_file 3 stim_files/scan1to4h_hrf.1D -stim_label 3 HighC
-stim_file 4 stim_files/scan1to4l_hrf.1D -stim_label 4 LowC
-concat contrasts/runs.1D
-glt 1 contrasts/contr_AvsT.txt -glt_label 1 AvsT
-glt 1 contrasts/contr_HvsL.txt -glt_label 2 HvsL
-glt 1 contrasts/contr_ATvsHL.txt -glt_label 3 ATvsHL
-full_first -fout -tout
-bucket func ht2
```

- Run this script by typing source decon_ht2 (takes a few minutes)
 - Stim #1 = visual presentation of active movements
 - Stim #2 = visual presentation of simple (tool-like) movements
 - Stims #3 and #4 = high and low contrast gratings

-52-

Extra Features of 3dDeconvolve - 1

-concat contrasts/runs.1D = file that indicates where new imaging runs start = put full model statistic first

in output file, not last

-fout -tout = output both F- and

fout -tout = output both *F*- and *t*-statistics

- The full model statistic is an *F*-statistic that shows how well the sum of all 4 input model time series fits voxel time series data
- The individual models also will get individual *F* and *t*-statistics indicating the significance of their individual contributions to the time series fit
 - ★ i.e., F_{Actions} tells if model (Actions+HighC+LowC+Tools+baseline) explains more of the data variability than model
 (HighC+LowC+Tools+baseline) with Actions omitted

Extra Features of 3dDeconvolve - 2

```
-glt 1 contrasts/contr_AvsT.txt -glt_label 1 AvsT

-glt 1 contrasts/contr_HvsL.txt -glt_label 2 HvsL

-glt 1 contrasts/contr ATvsHL.txt -glt_label 3 ATvsHL
```

- GLTs are General Linear Tests
- 3dDeconvolve provides tests for each regressor separately, but if you want to test combinations or contrasts of the β weights in each voxel, you need the -glt option
- File contrasts/contr_AvsT.txt = 00000001-100 (one line with 12 numbers)
- Goal is to test a linear combination of the β weights
 - * In this data, we have 12 β weights: 8 baseline parameters (2 per imaging run), which are first in the β vector, and 4 regressor magnitudes, which are from -stim file options
 - ★ This particular test contrasts the Actions and Tool β s • tests if $\beta_{\text{Actions}} - \beta_{\text{Tool}} \neq 0$

-54-

Extra Features of 3dDeconvolve - 3

- File contrasts/contr_HvsL.txt = 0000000001-1
 - Goal is to test if $\beta_{HighC} \beta_{LowC} \neq 0$
- File contrasts/contr_ATvsHL.txt = 0000000011-1-1
 - Goal is to test if $(\beta_{Actions} + \beta_{Tool}) (\beta_{HighC} + \beta_{LowC}) \neq 0$
 - Regions where this statistic is significant will have had different amounts of BOLD signal change in the activity viewing tasks versus the grating viewing tasks
 - This is a way to factor out primary visual cortex
- -glt_label 3 ATvsHL option is used to attach a meaningful label to the resulting statistics sub-bricks

Results of decon_ht2 Script

Menu showing labels from 3dDeconvolve run

- Images showing results from third contrast: ATvsHL
 - Play with this yourself to get a feel for it

-56-

Statistics from 3dDeconvolve

- An *F*-statistic measures significance of how much a model component reduced the variance of the time series data
- Full F measures how much the signal regressors reduced the variance over just the baseline regressors (sub-brick #0 below)
- Individual partial-model Fs measures how much each individual signal regressor reduced data variance over the full model with that regressor excluded (sub-bricks #19, #22, #25, and #28 below)
- The Coef sub-bricks are the **B** weights (e.g., #17, #20, #23, #26)
- A *t*-statistic sub-brick measure impact of one coefficient

```
Actions[0] Coe
                           #30 AvsT
           Actions[0] t-s #31 AvsT
                           #35 ATvsHL LC[0]
                          #36 ATvsHL LC[0] t
   t-s #23 HighC[0] Coef
t^1 Coe #24 HighC[0] t-st
                          #37 ATvsHL F-stat
```

Alternative Way to Run waver

Instead of giving stimulus timing on TR-grid as set of 0s and 1s

 Can give the actual stimulus times (in seconds) using the -tstim option

- If times are in a file, can use -tstim `cat filename` to place them on the command line after -tstim option

-58-

Alternative Way to Run 3dDeconvolve

Instead of giving stimulus timing to waver

- Can give the actual stimulus times (in seconds) directly to 3dDeconvolve using the -stim_times option (instead of -stim_file as before)
- The program will do the equivalent of waver inside itself to generate the necessary column(s) in the R matrix
- More information in the latter part of this presentation
 - ★ Is coupled with the ideas needed for "deconvolution"
 - ★ Besides input file with stimulus times, must also specify the HRF model to be used with those times
 - That is, which shape(s) are to be placed down at each stimulus time to model the ideal response

Deconvolution Signal Models

- Simple or Fixed-shape regression (previous):
 - ★ We fixed the shape of the HRF amplitude varies
 - ★ Used waver to generate the signal model from the stimulus timing (or could use 3dDeconvolve directly)
 - ★ Found the amplitude of the signal model in each voxel solution to the set linear equations = β weights
- <u>Deconvolution or Variable-shape regression</u> (next):
 - ★ We allow the shape of the HRF to vary in each voxel, for each stimulus class
 - ★ Appropriate when you don't want to overconstrain the solution by assuming an HRF shape
 - ★ Caveat: need to have enough time points during the HRF in order to resolve its shape

-60-

Deconvolution: Pros and Cons

- + Letting HRF shape varies allows for subject and regional variability in hemodynamics
- + Can test HRF estimate for different shapes; e.g., are later time points more "active" than earlier?
- Need to estimate more parameters for each stimulus class than a fixed-shape model (e.g., 4-15 vs. 1 parameter=amplitude of HRF)
- Which means you need more data to get the same statistical power (assuming that the fixedshape model you would otherwise use was in fact "correct")
- Freedom to get any shape in HRF results can give weird shapes that are difficult to interpret

-61-

Expressing HRF via Regression Unknowns

 The tool for expressing an unknown function as a finite set of numbers that can be fit via linear regression is an <u>expansion in basis functions</u>

$$h(t) = \beta_0 \psi_0(t) + \beta_1 \psi_1(t) + \beta_2 \psi_2(t) + \dots = \sum_{q=0}^{q=p} \beta_q \psi_q(t)$$

- \star The basis functions $\psi_q(t)$ are known, as is the expansion order p
- * The unknowns to be found (in each voxel) comprises the set of weights β_a for each $\psi_a(t)$
- Since β weights appear only by multiplying known values, and HRF only appears in final signal model by linear convolution, resulting signal model is still solvable by linear regression

-62-

Basis Function: "Sticks"

- The set of basis functions you use determines the range of possible HRFs that you can compute
- "Stick" (or Dirac delta) functions are very flexible
 - → But they come with a strict limitation
- $\delta(t)$ is 1 at t=0 and is 0 at all other values of t

•
$$\psi_q(t) = \delta(t-q\cdot TR)$$
 for $q=0,1,2,...,p$
 $\Rightarrow h(0) = \beta_0$
 $\Rightarrow h(TR) = \beta_1$
 $\Rightarrow h(2\cdot TR) = \beta_2$
 $\Rightarrow h(3\cdot TR) = \beta_3$
 $\Rightarrow et \ cetera$
• $\Rightarrow h(t) = 0$ for any t not on the TR grid

Sticks: Good Points

- Can represent arbitrary shapes of the HRF, up and down, with ease
- Meaning of each β_a is completely obvious
 - ★ Value of HRF at time lag q·TR after activation
- 3dDeconvolve is set up to deal with stick functions for representing HRF, so using them is very easy
 - What is called p here is given by command line option -stim maxlag in the program
 - When choosing p, rule is to estimate longest duration of neural activation after stimulus onset, then add 10-12 seconds to allow for slowness of hemodynamic response

-64-

Sticks and TR-locked Stimuli

- h(t) = 0 for any t not on the TR grid
- This limitation means that, using stick functions as our basis set, we can only model stimuli that are "locked" to the TR grid
 - ★ That is, stimuli/activations don't occur at fully general times, but only occur at integer multiples of TR
- For example, suppose an activation is at t=1.7-TR
 - * We need to model the response at later times, such as $2 \cdot TR$, $3 \cdot TR$, etc., so need to model h(t) at times such as $t=(2-1.7) \cdot TR=0.3 \cdot TR$, $t=1.3 \cdot TR$, etc., after the stimulus
 - But the stick function model doesn't allow for such intermediate times
 - or, can allow Δt for sticks to be a fraction of TR for data
 - e.g., $\Delta t = TR/2$, which implies twice as many β_q parameters to cover the same time interval (time interval needed is set by hemodynamics)
 - then would allow stimuli that occur on TR-grid or halfway in-between

-65-

Deconvolution and Collinearity

Regular stimulus timing can lead to collinearity!

-66-

3dDeconvolve with Stick Functions

- Instead of inputting a signal model time series (e.g., created with waver and stimulus timing), you input the stimulus timing directly
 - ★ Format: a text file with 0s and 1s, 0 at TR-grid times with no stimulus, 1 at time with stimulus
- Must specify the maximum lag (in units of TR) that we expect HRF to last after each stimulus
 - ★ This requires you to make a judgment about the activation — brief or long?
- 3dDeconvolve returns estimated values for each β_q , for each stimulus class
 - ★ Usually then use a GLT to test the HRF (or pieces of it) for significance

Extra Features of 3dDeconvolve - 4

- -stim_maxlag k p = option to set the maximum lag to p for stimulus timing file #k for k=0,1,2,...
 - ★ Stimulus timing file input using command line option
 -stim file k filename as before
 - ★ Can also use -stim_minlag k m option to set the minimum lag if you want a value m different from 0
 - ★ In which case there are p-m+1 parameters in this HRF
- -stim_nptr k r = option to specify that there are r stimulus subintervals per TR, rather than just 1
 - ★ This feature can be used to get a finer grained HRF, at the cost of adding more parameters that need to be estimated
 - Need to make sure that the input stimulus timing file (from -stim file) has r entries per TR
 - TR for -stim file and for output HRF is data TR ÷ r

-68-

Script for Deconvolution - The Data

- cd AFNI_data2
 - ★ data is in ED/ subdirectory (10 runs of 136 images each; TR=2 s)
 - * Script in file @s1.analyze_ht05 (in AFNI_data2 directory)
 - o stimuli timing and GLT contrast files in misc_files/
 - * start script <u>now</u> by typing source @s1.analyze_ht05
 - o will discuss details of script while it runs (20+ min?)
- Event-related study from Mike Beauchamp
 Formerly LBC/NIMH
 Now UT Houston
 - ★ 10 runs with four classes of stimuli (short videos)
 - Tools moving (e.g., a hammer pounding) <u>TM</u>
 - o People moving (e.g., jumping jacks) HM
 - o Points outlining tools moving (no objects, just points) TP
 - Points outlining people moving <u>HP</u>
 - ★ Goal is to find if there is an area that distinguishes natural motions (HM and HP) from simpler rigid motions (TM and TP)

Script for Deconvolution - Outline

- Examine each imaging run for outliers: 3dToutcount
- Time shift each run's slices to a common origin: 3dTshift
- Registration of each imaging run: 3dvolreg
- Smooth each volume in space (136 sub-bricks per run): 3dmerge
- Create a brain mask: 3dAutomask and 3dcalc
- Rescale each voxel time series in each imaging run so that its average through time is 100: 3dTstat and 3dcalc
 - * If baseline is 100, then a β_q of 5 (say) indicates a 5% signal change in that voxel at time laq $\#_q$ after stimulus
- Catenate all imaging runs together into one big dataset (1360 time points): 3dTcat
- Compute HRFs and statistics: 3dDeconvolve
 - ★ Each HRF will have 15 time points (lags from 0 to 14) with TR=1.0 s, since input data has TR=2.0 s and we use -stim nptr k r option with r=2
- Average together all points of each separate HRF to get average % change in each voxel over 14 s interval: 3dTstat

-70-

Script for Deconvolution - 1

```
#!/bin/tcsh
if ($#argv > 0 ) then
    set subjects = ($argv)
else
    set subjects = ED
endif
```

This script is designed to run analyses on a lot of subjects at once. We will only analyze the ED data here. The other subjects will be included in the Group Analysis presentation.

foreach subj (\$subjects)

Loop over all subjects (next 2 slides)

cd \$subj

First step is to change to the directory that has this subject's data

Script for Deconvolution - 2

```
time shift, volume register and spatially blur our datasets,
 and remove the first two time points from each run
set runs = ( `count -digits 2 1 10` )
                                           Loop over imaging runs 1..10
foreach run ( $runs )
                                           (loop continues on next slide)
                                               Shorthand for dataset
   set dset = ${subj} r${run}+orig.HEAD
                                              Outlier check:
                                           \ By itself, 3dToutcount
   3dToutcount -automask ${dset}
                                              doesn't change data!
                > toutcount r$run.1D
                                              To plot "outlier-ness":
                                              1dplot toutc r1.1D
   3dTshift -tzero 0 -heptic
                                              Interpolate each voxel's
             -prefix ${subj} r${run} ts \
                                              time series to start at the
              ${dset}
                                              time of slice #0
```

-72-

Script for Deconvolution - 3

```
3dvolreg -verbose
                                                 Image registration
          -base ${subj}_r01_ts+orig'[2]'
                                                 of each run to its
          -prefix ${subj} r${run} vr
                                                 #2 sub-brick
          -1Dfile dfile.r$run.1D
          ${subj} r${run} ts+orig'[2..137]'
                                             Lightly blur each 3D
3dmerge -1blur fwhm 4
                                             volume in each dataset
         -doall
                                             to reduce noise and
         -prefix ${subj} r${run} vr bl \
                                             increase functional
         ${subj} r${run} vr+orig
                                             overlap among runs
                                             and among subjects
3dAutomask -dilate 1
                                           Make an "inside-the-brain"
            -prefix mask r${run}
                                           mask for this dataset
            ${subj} r${run} vr bl+orig
      End of loop over imaging runs.
      At this point, dataset ${subj} r${run} vr bl
      contains the data for subject ${subj} and imaging
```

run \$ {run}, which has been time-shifted, realigned, and blurred; also, a brain-only mask has been made

Script for Deconvolution - 4

3dcalc program = voxel-wise "calculator" for datasets.
Input is 10 individual run dataset masks (1 in brain, 0 outside).
Output is mask which is

- 1 wherever *any* individual mask is 1,
- 0 wherever all individual masks are 0

-74-

Script for Deconvolution - 5

```
- re-scale each run's mean to 100
 - use full mask to zero out non-brain voxels
# If the mean is 100, and the result of 3dcalc at a voxel is 106 (at
# some time point), then one can say that voxel shows a 6% increase in
# signal activity, relative to the mean.
foreach run ( $runs )
                                               Mean of the run<sup>th</sup> dataset,
                                              through time: run=1..10
  3dTstat -prefix mean r${run}
          ${subj} r${run} vr bl+orig

    Divide each voxel

  3dcalc -a ${subj}_r${run}_vr_bl+orig
                                               value ('a') by its
         -b mean_r${run}+orig
                                               temporal mean ('b') and
         -c full mask+orig
                                               multiply by 100
         -expr "(a/b * 100) * c"
         -prefix scaled r${run}

    Result will have

                                               temporal mean of 100
  rm -f mean_r${run}+orig*

    Voxels not in the mask

                                               will be set to 0 (by 'c')
end
```

Script for Deconvolution - 6

```
3dTcat -prefix ${subj}_all_runs \
     scaled r??+orig.HEAD
```

"Gluing" the runs together, since 3dDeconvolve only operates on one input dataset at a time

cat dfile.r??.1D > dfile.all.1D

Also "glue" together the movement parameters output from 3dvolreg

Script for Deconvolution - 7

```
3dDeconvolve -polort 2
  -input ${subj}_all_runs+orig -num stimts 10 | Input dataset
  -concat ../misc files/runs.1D
  -stim file 1 ../misc files/all stims.1D'[0]'
                                                   0-1 stim file #1
     -stim label 1 ToolMovie
     -stim minlag 1 0 -stim maxlag 1 14 -stim nptr 1 2
  -stim file 2 ../misc files/all stims.1D'[1]'
                                                   0-1 stim file #2
     -stim label 2 HumanMovie
     -stim minlag 2 0 -stim maxlag 2 14 -stim nptr 2 2
  -stim file 3 ../misc files/all stims.1D'[2]'
                                                   0-1 stim file #3
     -stim label 3 ToolPoint
     -stim minlag 3 0 -stim maxlag 3 14 -stim nptr 3 2
  -stim file 4 ../misc files/all stims.1D'[3]'
                                                   0-1 stim file #4
     -stim label 4 HumanPoint
     -stim minlag 4 0 -stim maxlag 4 14 -stim nptr 4 2
```

- 4 time series models: one for each the 4 different classes of events
- All stimuli time series in 1 file with 4 columns: ../misc_files/all_stims.1D
 - Selectors like '[2]' pick out a particular column
 - Each stimulus input and HRF output is sampled at TR/2 = 1.0 s
 Due to the use of -stim nptr k 2 for each k
 - Lag from 0 to 14 s is about right for HRF to a brief stimulus
- -stim label option: names used in AFNI and below in -gltsym options

-77-

Script for Deconvolution - 8

```
-stim file 5 dfile.all.1D'[0]' -stim base 5
                                                Movement
-stim file 6 dfile.all.1D'[1]' -stim base 6
                                                regressors-of-
-stim file 7 dfile.all.1D'[2]' -stim base 7
                                                            ١
                                                no-interest:
-stim file 8 dfile.all.1D'[3]' -stim base 8
                                                            ١
                                                output from
-stim file 9 dfile.all.1D'[4]' -stim base 9
                                                3dvolreg
-stim file 10 dfile.all.1D'[5]' -stim base 10
-iresp 1 TMirf -iresp 2 HMirf
-iresp 3 TPirf -iresp 4 HPirf
-full first -fout -tout -nobout -xjpeg Xmat
-bucket ${subj} func
```

- Output HRF (-iresp) 3D+time dataset for each stimulus class
 - Each of these 4 datasets will have TR=1.0 s and have 15 time points (β weights for lags 0..14)
 - Can plot these HRF datasets atop each other using Dataset#N plugin
 - Useful for visual inspection of regions that GLTs tell you have different responses for different classes of stimuli
- -nobout = don't output statistics of baseline parameters
- -bucket = save statistics into dataset with this prefix
- -xjpeg = save an image of the R matrix into file Xmat.jpg

-78-

Script for Deconvolution - 9

```
-gltsym ../misc_files/contrast1.1D -glt_label 1 FullF
-gltsym ../misc_files/contrast2.1D -glt_label 2 HvsT
-gltsym ../misc_files/contrast3.1D -glt_label 3 MvsP
-gltsym ../misc_files/contrast4.1D -glt_label 4 HMvsHP
-gltsym ../misc_files/contrast5.1D -glt_label 5 TMvsTP
-gltsym ../misc_files/contrast6.1D -glt_label 6 HPvsTP
-gltsym ../misc_files/contrast7.1D -glt_label 7 HMvsTM
```

- Run many GLTs to contrast various pairs and quads of cases
- New feature: -gltsym = specify β weights to contrast using -stim_label names given earlier on the command "line"
 - Simpler than counting 0s and ±1s to fill out GLT matrix numerically
- Example: file contrast2.1D is the single line below:

```
-ToolMovie +HumanMovie -ToolPoint +HumanPoint which means to put "-1" in the matrix for all 15 lags for stimuli #1 and #3 and "+1" in the matrix for all 15 lags for stimuli #2 and #4
```

- This is the "Human vs Tools" contrast (labeled HvsT via -glt label)
- Sum of the 30 "Tool" β weights subtracted from Sum of the 30 "Human" β weights
- Testing: % signal change for Human stimuli different than Tool stimuli?

Script for Deconvolution - 10

3dbucket -prefix \${subj}_func_slim -fbuc \ br \${subj}_func+orig'[0,125..151]'

Extract a subset of interesting statistics subbricks into a "slimmeddown" functional dataset

foreach cond (TM HM TP HP)

3dTstat -prefix \${subj}_\${cond}_irf_mean \
\${cond}irf+orig

Compute HRF means across all lags 0..14 for each of the 4 stimuli types

Transform this individual's mean % signal results into Talairach coordinates for group analyses

end ... End of loop over subjects; go back to upper directory whence we started

-80-

Results: Humans vs. Tools

- Color overlay is HvsT contrast
- Blue (upper) curves: Human HRFs
- Red (lower) curves: Tool HRFs

Yet More Fun 3dDeconvolve Options

- -mask = used to turn off processing for some voxels
 - ★ speed up the program by not processing non-brain voxels
- -input1D = used to process a single time series, rather than a dataset full of time series
 - * test out a stimulus timing sequence
 - ★ -nodata option can be used to check for collinearity
- -censor = used to turn off processing for some time points
 - ★ for time points that are "bad" (e.g., too much movement)
- -sresp = output standard deviation of HRF estimates
 - * can plot error bands around HRF in AFNI graph viewer
- -errts = output residuals (i.e., difference between fitted model and data)
 - ★ for statistical analysis of time series noise
- -jobs **N** = run with multiple CPUS **N** of them
 - ★ extra speed, if you have a dual-CPU system (or more)!

-82-

3dDeconvolve with Free Timing

- The fixed-TR stick function approach doesn't work well with arbitrary timing of stimuli
 - ★ When subject actions/reactions are self-initiated, timing of activations cannot be controlled
- If you want to do deconvolution (vs. fixed-shape analysis), then must adopt a different basis function expansion approach
 - * One that has a finite number of parameters but also allows for calculation of h(t) at any arbitrary point in time
- Simplest set of such functions are closely related to stick functions: tent functions

$$T(x) = \begin{cases} 1 - |x| & \text{for } -1 < x < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$

-83-

<u>Tent Functions = Linear Interpolation</u>

 Expansion in a set of spaced-apart tent functions is the same as linear interpolation

$$\beta_{0} \cdot T\left(\frac{t}{L}\right) + \beta_{1} \cdot T\left(\frac{t-L}{L}\right) + \beta_{2} \cdot T\left(\frac{t-2 \cdot L}{L}\right) + \beta_{3} \cdot T\left(\frac{t-3 \cdot L}{L}\right) + \cdots$$

$$\beta_{2}$$

$$\beta_{3}$$
N.B.: 5 intervals = 6 β weights
$$\beta_{4}$$

$$\beta_{5}$$
time

- Tent function parameters are also easily interpreted as function values (e.g., β_2 = response at time $t = 2 \cdot L$ after stim)
- User must decide on relationship of tent function grid spacing
 L and time grid spacing TR (usually would choose L≥ TR)
- Fancy name for tent functions: piecewise linear B-splines

-84-

Tent Functions: Average Signal Change

- For input to group analysis, usually want to compute average signal change
 - ★ Over entire duration of HRF (usual)
 - ★ Over a sub-interval of the HRF duration (sometimes)
- In previous slide, with 6 β weights, average signal change is

$$\frac{1}{2}\beta_0 + \beta_1 + \beta_2 + \beta_3 + \beta_4 + \frac{1}{2}\beta_5$$

- First and last β weights are scaled by half since they only affect half as much of the duration
- In practice, may want to use $0 \cdot \beta_0$ since immediate poststimulus response is not hemodynamically correct
- β weights are output into the "bucket" dataset produced by
 3dDeconvolve
- Can then be combined into a single number using 3dcalc

-85-

3dDeconvolve -stim times

- Direct input of stimulus timing, plus a response model
- Specifies stimuli, instead of using -stim file
- -stim times k tname rtype
 - ★ k = stimulus index (from 1 to -num stimts value)
- tname = name of .1D file containing stimulus times (seconds)
 - * N.B.: TR stored in dataset header must be correct!
- rtype = name of response model to use for each stimulus time read from tname file
 - ★ GAM = gamma variate function from waver (fixed-shaped analysis)
 - ★ TENT (b,c,n) = tent function deconvolution, ranging from time s+b to s+c after each stimulus time s, with n basis functions (divided evenly over c-b seconds, into n-1 intervals)
 - * several other rtype options available (experimental)
- Can mix -stim file and -stim times as needed
 - ⋆ e.g., movement parameter regressors at each TR

-86-

Two Possible Formats of Timing File

A single column of numbers ←

4.7 9.6 11.8

- ⋆ One stimulus time per row
- ★ Times are relative to first image in dataset being at t=0
- ★ May not be simplest to use if multiple runs are catenated
- One row for each run within a catenated dataset
 - ★ Each time in j^{th} row is relative to start of run #j being t=0
 - *If some run has NO stimuli in the given class, just put a single "*" in that row as a filler
 - Different numbers of stim per run are OK

* 8.3 10.6

- o At least one row must have more than 1 time (so that this type of timing file can be told from the other)
- Two methods are available because of users' diverse needs
 - ★ N.B.: if you chop first few images off the start of each run, the inputs to -stim_times must be adjusted accordingly

Other Recent-ish Upgrades

- See http://afni.nimh.nih.gov/doc/misc/3dDeconvolveSummer2004/
- Equation solver: Gaussian elimination to compute **R** matrix pseudo-inverse was replaced by SVD (like principal components)
 - * Advantage: smaller sensitivity to computational errors
 - ★ "Condition number" and "inverse error" values are printed at program startup, as measures of accuracy of pseudo-inverse
 - ★ Condition number < 1000 is good
 - ★ Inverse error < 1.0e-10 is good
- 3dDeconvolve_f program can be used to compute in single precision (7 decimal places) rather than double precision (16)
 - ★ For better speed, but with lower numerical accuracy
 - ★ Best to do at least one run **both** ways to check if results differ significantly (SVD solver *should* be safe)

-88-Recent Upgrades - 2 • New -xjpeg xxx.jpg option will save a JPEG image file of the columns of the R matrix into file xxx.jpg (and an image of the pseudo-inverse of R into file xxx psinv.jpg) Simple regression Constant and functions created linear baselines by waver and input for each run by -stim file (-polort 1) Why 'x' instead of 'R'? Because SPM calls this the 'X' matrix, not the 'R' matrix.

Recent Upgrades - 3

- Matrix inputs for -glt option can now indicate lots of zero entries using a notation like 30@0 1 -1 0 0 to indicate that 30 zeros precede the rest of the input line
 - ★ Example: 10 imaging runs and -polort 2 for baseline
 - ★ Can put comments into matrix and .1D files, using lines that start with '#' or '//'
 - ★ Can use '\' at end of line to specify continuation
- Matrix input for GLTs can also be expressed symbolically, using the names given with the -stim label options:

```
-stim_label 1 Ear -stim_maxlag 1 4
-stim_label 2 Wax -stim_maxlag 2 4

* Old style GLT might be Sum of Ear - Sum of Wax (lags 2..4)

{zeros for baseline} 0 0 1 1 1 0 0 -1 -1 -1

* New style (via -gltsym option) is
Ear[2..4] -Wax[2..4]
```

-90-

Recent Upgrades - 4

- New -xsave option saves the R matrix (and other info) into a file that can be used later with the -xrestore option to calculate some extra GLTs, without re-doing the entire analysis (goal: save some time by not recomputing)
- -input option now allows multiple 3D+time datasets to be specified to automatically catenate individual runs into one file 'on the fly'
 - ★ Avoids having to use program 3dTcat
 - ★ User must still supply full-length .1D files for the various input time series (e.g., -stim_file, -stim_times)
 - ★ -concat option will be ignored if this option is used
 - Break points between runs will be taken as the break points between the various -input datasets
- -polort option now uses Legendre polynomials instead of simple 1, t, t^2 , t^3 , ... basis functions (more numerical accuracy)

Recent Upgrades - 5

- 3dDeconvolve now checks for duplicate -stim_file names and for duplicate matrix columns, and prints warnings
 - ⋆ These are not fatal errors
 - If the same regressor is given twice, each copy will only get half the amplitude (the "beta weight") in the solution
- All-zero regressors are now allowed
 - ★ Will get zero weight in the solution
 - A warning message will be printed to the terminal
 - ★ Example: task where subject makes a choice for each stimulus (e.g., male or female face?)
 - You want to analyze correct and incorrect trials a separate cases
 - What if a subject makes no mistakes? Hmmm...

-92-

Recent Upgrades - 6

- Recall: -iresp option outputs the HRF model for one stimulus
 - ★ When used with -stim_times, values are usually output using the dataset TR time spacing
 - ★ Can changes to a different grid via new -TR_times dt option, which sets the output grid spacing for -iresp to dt for HRF models computed via -stim times
 - Is useful for producing nice smooth pictures of HRF
 - o Also works with **-sresp** option (= std.dev. of HRF)
- **<u>Difficulty</u>**: using GLTs with results from -stim times
 - ★ GLTs operate on regression coefficients
 - ★ For advanced (experimental) rtype models, regression coefficients don't correspond directly to HRF amplitudes
 - o Exceptions: GAM, TENT, BLOCK

<u>Upgrades – Planned or Dreamed of</u>

- Automatic baseline normalization of input time series
- Automatic mask generation (à la 3dAutomask program)
- Spatial blur (à la 3dmerge -1blur)
- Time shift input before analysis (à la 3dTshift program)
- Negative lags for -stim_file method of deconvolution
 - ★ for pre-stimulus cognition/anticipation
 - ★ -stim_times already allows pre-stimulus response
- 'Area under curve' addition to -gltsym to allow testing of pieces of HRF models from -stim times
- Slice- and/or voxel-dependent regressors
 - ★ For physiological noise cancellation, etc.
- Floating point output format
 - ★ Currently is shorts + scale factor

-94-

Advanced Topics in Regression

- Can have activations with multiple phases that are not always in the same time relationship to each other; e.g.:
 - a) subject gets cue #1
 - b) variable waiting time ("hold")
 - c) subject gets cue #2, emits response
 - which depends on both cue #1 and #2

timing of events is known

- ★ Cannot treat this as one event with one HRF, since the different waiting times will result in different overlaps in separate responses from cue #1 and cue #2
- ★ Solution is multiple HRFs: separate HRF (fixed shape or deconvolution) for cue #1 times and for cue #2 times
 - Must have significant variability in inter-cue waiting times, or will get a nearly-collinear model
 - impossible to tell tail end of HRF #1 from the start of HRF #2, if always locked together in same temporal relationship
 - How much variability is "significant"? Good question.

-95-

Even More Complicated Case

- Solving a visually presented puzzle:
 - a) subject sees puzzle
 - b) subject cogitates a while
 - c) subject responds with solution

timing of events is measured

- The problem is that we expect some voxels to be significant in phase (b) as well as phases (a) and/or (c)
- Variable length of phase (b) means that shape for its response varies between trials
 - ★ Which is contrary to the whole idea of averaging trials together to get decent statistics (which is basically what linear regression amounts to, in a fancy sort of way)
- Could assume response amplitude in phase (b) is constant across trials, and response duration varies directly with time between phases (a) and (c)
 - ★ Need three HRFs; phase (b)'s is a little tricky to generate using waver, but it could be done

-96-

Noise Issues

- "Noise" in FMRI is caused by several factors, not completely characterized
 - ★ MR thermal noise (well understood, unremovable)
 - ★ Cardiac and respiratory cycles (partly understood)
 - In principle, could measure these sources of noise separately and then try to regress them out
 - → RETROICOR program underway (R Birn & M Smith of FIM/NIMH)
 - ★ Scanner fluctuations (e.g., thermal drift of hardware)
 - ★ Small subject head movements (10-100 mm)
 - ★ Very low frequency fluctuations (periods longer than 100 s)
- Data analysis should try to remove what can be removed and allow for the statistical effects of what can't be removed
 - ★ "Serial correlation" in the noise time series affects the *t* and
 F-statistics calculated by 3dDeconvolve
 - ★ At present, nothing is done to correct for this effect (by us)

Nonlinear Regression

- Linear models aren't everything
 - \star e.g., could try to fit HRF of the form $h(t) = a \cdot t^b \cdot e^{-t/c}$
 - ★ Unknowns b and c appear nonlinearly in this formula
- Program 3dNLfim can do nonlinear regression (including nonlinear deconvolution)
 - ★ User must provide a C function that computes the model time series, given a set of parameters (e.g., a, b, c)
 - ★ Program then drives this C function repeatedly, searching for the set of parameters that best fit each voxel
 - ★ Has been used to fit pharmacological wash-in/wash-out models (difference of two exponentials) to FMRI data acquired during pharmacological challenges
 - o e.g., injection of nicotine, cocaine, ethanol, etc.
 - o these are tricky experiments, at best